首页 > 学习资料 > 知识积累 >

乘法的意义和乘法交换律优秀10篇

分享 162887

分享

作为一位杰出的教职工,有必要进行细致的教学设计准备工作,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么大家知道规范的教学设计是怎么写的吗?这次漂亮的小编为您带来了乘法的意义和乘法交换律优秀10篇,希望可以启发、帮助到大家。

篇一:数学教案-乘法的意义和运算定律 篇一

4、乘法的意义和运算定律

课题一:乘法的意义和乘法交换律

教学内容:教科书第25页的例1和第25、26页的乘法交换律,完成“做一做”中的题目和练习五的第1――5题。

教学目的:使学生加深对乘法的。意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。

教学重点难点:乘法的意义和乘法交换律

授课类型:新授课 练习课

教学方法:讨论法、讲授法

授课时间:一课时

教具准备:多媒体

教学过程?:

一、复习

教师出示复习题。

1、同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多少人?

2、同学们做纸花。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?

3、小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

上面这些题哪些可以用乘法计算?为什么?

二、新课

1、教学例1。出示例1的插图,再提问:要求盘里一共有多少个鸡蛋可以怎样求?还可以怎样求?

用加法计算:5+5+5+5+5+5=30(个)

用乘法计算:5×6=30(个)

解答这道题用乘法计算简便还是用加法计算简便?

求几个相同加数的和的简便运算,叫做乘法。

在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

注意:一个数和1相乘,仍得原数。例如:1×3=3 3×1=3 1×1=1

一个数和0相乘,仍得0。例如:0×3=0 3×0=0 0×0=0

2、教学乘法交换律。

让学生再看例1的插图,然后教师提问:要求一共有多少个鸡蛋,同乘法计算还可以这样列式?学生回答后,教师板书:6×5=30(个)

比较一下这两个乘法算式,有哪些相同?有哪些不同?

学生发言后,教师边说边板书:两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

用字母表示:a×b=b×a

三、巩固练习:

1、做第26页“做一做”的题目。先让学生独立做,然后再集体核对。

2、做练习五的第3、4题。学生独立做完后,再集体核对。

四、作业?:练习五的第1、2、5题。

小结:今天我们学了什么?什么叫乘法的交换律?

附板书:乘法的意义和乘法交换律

用加法计算:5+5+5+5+5+5=30(个)

用乘法计算:5×6=30(个)

求几个相同加数的和的简便运算,叫做乘法。

在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

注意:一个数和1相乘,仍得原数。例如:1×3=3 3×1=3 1×1=1

一个数 和0相乘,仍得0。例如:0×3=0 3×0=0 0×0=0

两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

用字母表示:a×b=b×a

篇二:乘法的意义 篇二

教学目标 

1.使学生在原有知识的基础上,进一步理解乘法的意义,并能运用它解决实际问题。

2.使学生理解和掌握乘法交换律,并能运用它进行验算。

3.借助视察、比较、综合、概括等方法,培养学生的分析推理、抽象概括、及运用新知解决实际问题的能力。

教学重点:

使学生理解并运用乘法的意义及其运算定律——交换律。

教学难点 :

乘法交换律的应用。

教具学具准备

口算卡片、投影仪。

教学步骤 

一、铺垫孕伏

1.口算:14×3        50×30      2×50       15×4     15+15+15+15

4+4+4+4      30×12      60× 40     4×25     9+9+9+9+9

2.导入  :刚才的口算题同学们算得很对,那么同学们想不想即算得对又算得快呢?好!为了实现你们的愿望,这节课我们继续学习乘法的有关知识。乘法的意义和乘法的交换律。(板书课题)

二、探求新知

1.教学乘法意义:

(1)出示例1,指名读题。演示课件“乘法的意义”出示例1 下载

引导学生分析:横着看或竖着看,每排放几个,一共有几排?

教师提问:如果要求盘里一共有多少个鸡蛋用加法怎样解答?

用加法计算:5+5+5+5+5+5=30(个)

或6+6+6+6+6=30(个)   (教师板书)

教师提问:如果要求盘里一共有多少个鸡蛋用乘法该怎样解答呢?

用乘法计算:5×6=30(个)或6×5=30(个)(教师板书)

(2)对比例1中的两种方法,哪种方法简便?

引导学生说出:求几个相同加数的和,可用加法计算,也可用乘法计算,用乘法计算比较简便。

教师提问:从上面的算式关系,谁能说一说乘法是什么样的运算?

教师补充说明:求几个相同加数和的简便运算叫做乘法。演示课件“乘法的意义” 下载

相乘的两个数叫做因数,乘得的数叫积。

(3)教学1和0的乘法特点:

想一想:过去学过的乘法算式中,有没有不表示求几个相同加数的和的?

启发学生举例:3×1=3   1×1=1   3×0=0    0×0=0   (教师板书)

引导学生观察:这几个算式都和哪几个数有关系?

教师归纳:一个数和1相乘,仍得原数。

一个数和0相乘,仍得0.

(4) 反馈练习:(投影出示)

①下列算式能否改成乘法算式,为什么?

120+120+120+120          80+90+70          15+15+15+20

②判断:

求几个加数和的简便运算叫乘法。( )

求几个相同加数和的运算叫乘法。( )

2.教学乘法交换律:

(1)    出示例2  演示课件“乘法交换律”出示例2

观察下面每组的两个算式,它们有什么样的关系?

12×5○5×12 400×20○20×400

引导学生分组计算,使学生明确:左边两个数的乘积和右边两个数的乘积相等。

学生讨论:是不是所有像这样的式子都具有这些特点呢?

引导学生互相讨论,自己举例说明,教师巡视。

启发学生得出结论:两个数相乘,交换因数的位置,它们的积不变。

教师指出:这叫做乘法的交换律。

反馈练习:

①下列各式运用了乘法的交换律,对吗?为什么?

11×9=9×100     12×18=2×18         a+b=b+a

②课本第60页“做一做”第1题。

根据运算定律在下面的□里填上适当的数。

12×32=32×□     39×41=□×□

(2) 教师提问:

加法交换律可用字母表示出来,如果用a和b表示两个因数,那么乘法的交换律用字母该怎样表示呢?(a×b=b×a)    (教师板书)

教师指出:这里a、b表示大于0或等于0的整数。

教师提问:以前学习哪些知识时用了乘法交换律。(笔算乘法验算时用到了乘法交换律。)

(3)练习:课本第60页的“做一做”第2题。

计算下面各题,用交换因数的位置的方法进行验算。

32×25 105×424

三、巩固发展

四、课堂小结

教师带领学生回忆本节课学习了什么?应注意什么问题?(1和0的乘法特点)

五、布置作业 

教材62页1、2题

1题、应用乘法意义说明下面各题为什么要用乘法计算?

(1)    一幢宿舍楼有6个单元,每个单元可以住15户。一共可以住多少户?

(2)    一头牛重500千克,一头大象的重量是这头牛的10倍。这头大象有多重?

2题、根据运算性质定律在下面□里填上适当的数。

15×16=16×□                 25×7×4=□×□×7

(60×25)×□=60×(□×8)       (125×□)×□=125×(9×14)

板书设计 :

篇三:乘法的意义 篇三

信息窗2——变葫芦

教学内容

乘法的意义,乘法算式的写法及各部分名称

教学目标:

1、通过具体的生活情景使学生初步体会乘法的意义。

2、通过同数连加引出乘法算式,掌握写法、读法及各部分名称。

3、培养学生发现问题、提出问题、解决问题的能力和意识。

重点难点:

1、理解乘法的意义。

2、乘法算式的写法及各部分名称。

教具准备:多媒体课件

教学时间:2课时

教学过程

一、导入

1、算一算

2+2+2+2=   4+4+4=2            3+3+3=

2、思考:像这样加数都相同的加法算式用什么方法计算比较简便呢?

二、探究新知

今天我们就来研究一下有关乘法的知识。(此处我认为不是提出“乘法”这一概念的最佳时机)

1、电脑出示课件,根据画面你能提出问题吗?(你能提出什么问题?)

小组合作,提出问题并列式计算。

2、交流。

3、针对5+5+5+5+5+5+5+5= 40进行乘法教学。

用加法算宝葫芦的个数太麻烦了,用乘法计算比较简便。(在这里提出乘法自然而然,让学生充分体会出学习乘法的必要性)

问:相同加数是几?有几个这样的加数?

相同加数是5有8个这样的数,可以用乘法表示。

板书:8×5= 40   5×8= 40,介绍各部分的名称,读法。

4、小组将本组的加法算式改写成乘法算式,并汇报。

一共有多少只小鸟?

4 + 4 + 4 =(   )(只)

写成乘法算式:(  )×(  )=(  )(只)

或 (  )×(  )=(  )(只)

三、试一试

1、课本第6页自主练习1

( )+( )=( )   ( )+( )+( )+( )=( )

( )×( )=( )   ( )×( )=( )

2、填一填

3+3+3+3=(  )×(  )    5+5+5+5+5+5=(  )×(  )

7+7+7=(  )×(  )      6+6+6+6+6=(  )×(  )

3、写出乘法算式,再读出来。

4个2相加           3乘5               6和4相乘

(  )   (  )      (  )    (  )       (  )   (  )

4、找朋友

7×3       4×6       2×5     6×4      5+5

2+2+2+2+2    7+7+7    6+6+6+6    3×7    4+4+4+4+4

5、把图画补充完整。

2×4

6、课本第7页第7题。

(1)一共有多少个小朋友在滑冰?

(2)你还能提出什么问题?

四、小结

这节课你有什么收获

教学反思

学生理解乘法的意义有一定的难度,教师要适时引导,加强学生的理解。

篇四:乘法的意义 篇四

4、乘法的意义和运算定律

课题一:乘法的意义和乘法交换律

教学内容:教科书第25页的例1和第25、26页的乘法交换律,完成“做一做”中的题目和练习五的第1——5题。

教学目的:使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。

教学重点难点:乘法的意义和乘法交换律

授课类型:新授课 练习课

教学方法:讨论法、讲授法

授课时间:一课时

教具准备:多媒体

教学过程 :

一、复习

教师出示复习题。

1、同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多少人?

2、同学们做纸花。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?

3、小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

上面这些题哪些可以用乘法计算?为什么?

二、新课

1、教学例1。出示例1的插图,再提问:要求盘里一共有多少个鸡蛋可以怎样求?还可以怎样求?

用加法计算:5+5+5+5+5+5=30(个)

用乘法计算:5×6=30(个)

解答这道题用乘法计算简便还是用加法计算简便?

求几个相同加数的和的简便运算,叫做乘法。

在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

注意:一个数和1相乘,仍得原数。例如:1×3=3 3×1=3 1×1=1

一个数和0相乘,仍得0。例如:0×3=0 3×0=0 0×0=0

2、教学乘法交换律。

让学生再看例1的插图,然后教师提问:要求一共有多少个鸡蛋,同乘法计算还可以这样列式?学生回答后,教师板书:6×5=30(个)

比较一下这两个乘法算式,有哪些相同?有哪些不同?

学生发言后,教师边说边板书:两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

用字母表示:a×b=b×a

三、巩固练习:

1、做第26页“做一做”的题目。先让学生独立做,然后再集体核对。

2、做练习五的第3、4题。学生独立做完后,再集体核对。

四、作业 :练习五的第1、2、5题。

小结:今天我们学了什么?什么叫乘法的交换律?

附板书:乘法的意义和乘法交换律

用加法计算:5+5+5+5+5+5=30(个)

用乘法计算:5×6=30(个)

求几个相同加数的和的简便运算,叫做乘法。

在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

注意:一个数和1相乘,仍得原数。例如:1×3=3 3×1=3 1×1=1

一个数 和0相乘,仍得0。例如:0×3=0 3×0=0 0×0=0

两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

用字母表示:a×b=b×a

篇五:乘法的意义 篇五

4、

课题一:乘法的意义和乘法交换律

教学内容:教科书第25页的例1和第25、26页的乘法交换律,完成“做一做”中的题目和练习五的第1——5题。

教学目的:使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。

教学重点难点:乘法的意义和乘法交换律

授课类型:新授课 练习课

教学方法:讨论法、讲授法

授课时间:一课时

教具准备:多媒体

教学过程 :

一、复习

教师出示复习题。

1、同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多少人?

2、同学们做纸花。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?

3、小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

上面这些题哪些可以用乘法计算?为什么?

二、新课

1、教学例1。出示例1的插图,再提问:要求盘里一共有多少个鸡蛋可以怎样求?还可以怎样求?

用加法计算:5+5+5+5+5+5=30(个)

用乘法计算:5×6=30(个)

解答这道题用乘法计算简便还是用加法计算简便?

求几个相同加数的和的简便运算,叫做乘法。

在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

注意:一个数和1相乘,仍得原数。例如:1×3=3 3×1=3 1×1=1

一个数和0相乘,仍得0。例如:0×3=0 3×0=0 0×0=0

2、教学乘法交换律。

让学生再看例1的插图,然后教师提问:要求一共有多少个鸡蛋,同乘法计算还可以这样列式?学生回答后,教师板书:6×5=30(个)

比较一下这两个乘法算式,有哪些相同?有哪些不同?

学生发言后,教师边说边板书:两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

用字母表示:a×b=b×a

三、巩固练习:

1、做第26页“做一做”的题目。先让学生独立做,然后再集体核对。

2、做练习五的第3、4题。学生独立做完后,再集体核对。

四、作业 :练习五的第1、2、5题。

小结:今天我们学了什么?什么叫乘法的交换律?

附板书:乘法的意义和乘法交换律

用加法计算:5+5+5+5+5+5=30(个)

用乘法计算:5×6=30(个)

求几个相同加数的和的简便运算,叫做乘法。

在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

注意:一个数和1相乘,仍得原数。例如:1×3=3 3×1=3 1×1=1

一个数 和0相乘,仍得0。例如:0×3=0 3×0=0 0×0=0

两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

用字母表示:a×b=b×a

篇六:乘法的意义 篇六

4、乘法的意义和运算定律

课题一:乘法的意义和乘法交换律

教学内容:教科书第25页的例1和第25、26页的乘法交换律,完成“做一做”中的题目和练习五的第1——5题。

教学目的:使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。

教学重点难点:乘法的意义和乘法交换律

授课类型:新授课 练习课

教学方法:讨论法、讲授法

授课时间:一课时

教具准备:多媒体

教学过程 :

一、复习

教师出示复习题。

1、同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多少人?

2、同学们做纸花。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?

3、小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

上面这些题哪些可以用乘法计算?为什么?

二、新课

1、教学例1。出示例1的插图,再提问:要求盘里一共有多少个鸡蛋可以怎样求?还可以怎样求?

用加法计算:5+5+5+5+5+5=30(个)

用乘法计算:5×6=30(个)

解答这道题用乘法计算简便还是用加法计算简便?

求几个相同加数的和的简便运算,叫做乘法。

在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

注意:一个数和1相乘,仍得原数。例如:1×3=3 3×1=3 1×1=1

一个数和0相乘,仍得0。例如:0×3=0 3×0=0 0×0=0

2、教学乘法交换律。

让学生再看例1的插图,然后教师提问:要求一共有多少个鸡蛋,同乘法计算还可以这样列式?学生回答后,教师板书:6×5=30(个)

比较一下这两个乘法算式,有哪些相同?有哪些不同?

学生发言后,教师边说边板书:两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

用字母表示:a×b=b×a

三、巩固练习:

1、做第26页“做一做”的题目。先让学生独立做,然后再集体核对。

2、做练习五的第3、4题。学生独立做完后,再集体核对。

四、作业 :练习五的第1、2、5题。

小结:今天我们学了什么?什么叫乘法的交换律?

附板书:乘法的意义和乘法交换律

用加法计算:5+5+5+5+5+5=30(个)

用乘法计算:5×6=30(个)

求几个相同加数的和的简便运算,叫做乘法。

在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

注意:一个数和1相乘,仍得原数。例如:1×3=3 3×1=3 1×1=1

一个数 和0相乘,仍得0。例如:0×3=0 3×0=0 0×0=0

两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

用字母表示:a×b=b×a

篇七:数学教案-口算乘法 篇七

《笔算乘法》数学教案

第1课时

教学内容:

教学目标:

让学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数进位的乘法。在学习活动中感受数学与生活的密切联系。

教学重点:学会计算两位数乘两位数进位的乘法(不进位)。

教学过程:

一、提出问题。

呈现例1的画面,让学生观察

用完整的话把这幅图的内容、问题说一说。

请学生说一说用什么方法解决这个问题,从而列出算式24times;12。

二、探讨计算方法

1、各组讨论:怎样计算24times;12。

请把想出的计算方法写在纸上。

2、组织交流。

各组展示本组的算法。不容易说清楚的,就写在黑板上。

方法一:

24times;10=240

24times;2=48

240+48=288

方法二:24

times;12

48……24times;2的积

24……24times;10的积(个位的0不写)

288

3、师生评议。

(1)请学生说一说,喜欢哪种方法?为什么?

(2)教师对学生发表的意见作以肯定或补充。

(3)重点评议笔算。

用检查竖式每一步计算的方式,再现笔算过程。

三、练习

1、尝试练习。

用竖式计算63页“做一做”的8道题。请几名学生上黑板板演,讲评。

2、独立完成练习十六第1题。

四、总结

1、请学生讨论笔算乘法时要注意什么问题,并交流。

2、教师强调:用竖式计算时,每次乘得的数的末位应该和那一位对齐。还要注意记住进位数,正确处理进位问题。

第2课时

教学内容:

教学目标:

1、通过练习,使学生进一步熟练掌握两位数乘两位数的笔算方法。

2、能解决用乘法计算的实际问题。

教学过程:

一、基本练习:

1、学生回顾上节课学习的内容。

2、口算练习:

3、笔算:

4、正误辩析:

二、解决问题:

1、完成练习十五第3题:

(1)引导学生看图,获取信息。

(2)同桌互相说:把图上的意思完整的说一说。

(3)独立列出算式,并用竖式笔算。

(4)集体讲评。

2、学生独立完成练习十五第4题:

三、综合练习:

完成《学案》相应的练习。

四、学习总结:

第3课时

教学目标:

让学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数进位的乘法。在学习活动中感受数学与生活的密切联系。

教学重点:学会计算两位数乘两位数进位的乘法。

教学过程:

一、提出问题。

呈现下围棋的画面,介绍有关围棋赛的事例或战绩。

放大棋盘,让学生观察棋盘结构。使学生了解到:围棋的棋盘面由纵横19道线交叉组成。

接着,把棋子放在纵横线的交叉点上,引出问题:“棋盘上一共有多少个交叉点?”

请学生说一说用什么方法解决这个问题,从而列出算式19times;19。

二、探讨计算方法。

1、各组讨论:

请把想出的计算方法写在纸上。

2、组织交流。

各组展示本组的算法。不容易说清楚的,就写在黑板上。

3、师生评议。

(1)请学生说一说,喜欢哪种方法?为什么?

(2)教师对学生发表的。意见作以肯定或补充。使学生了解每一种算法的特点和适用范围。例如,估算的方法能很快算出大约有400个交叉点,但它不能满足解决问题的要求。

(3)重点评议笔算。

用检查竖式每一步计算的方式,再现笔算过程。

三、练习

1、尝试练习。

用竖式计算65页“做一做”中的4道题。

2、完成练习十六第1、2题。

四、总结

1、请学生讨论笔算乘法时要注意什么问题,并交流。

2、教师强调:用竖式计算时,每次乘得的数的末位应该和那一位对齐。还要注意记住进位数,正确处理进位问题。

第4课时

教学内容:

教学目标:

1、通过练习,使学生进一步熟练掌握两位数乘两位数(进位)的笔算方法。

2、能解决用乘法计算的实际问题。

教学过程:

一、基本练习:

1、学生回顾上节课学习的内容。

2、开火车进行口算练习:

3、笔算练习(进位与不进位的对比):

(1)学生笔算。

(2)请学生观察比较:上行的题目和下行的题目有什么异同?

(3)学生讨论交流:它们的计算方法是一样的,不同的是上行的题目计算时没有进位,而下一行的题目需要进位。

(4)说说笔算乘法要注意什么?

4、正误辩析:

教师用小黑板出示6道计算出现错误的笔算式题,让学生判断正误,并进行改正。

二、解决问题:

1、完成练习十六第3题:

(1)引导学生看图,获取信息。

(2)同桌互相说:把图上的意思完整的说一说。

(3)独立列出算式,并用竖式笔算。

(4)集体讲评。

2、学生独立完成练习十五第4题、第8题。

第8题:在解决这道题时,是不是所有的信息都用上?为什么“每套12张”用不上?这样的题目给了你什么启示?

三、综合练习:

独立完成练习十六第5、6、7题。

四、学习总结:

说说这节课有什么收获?笔算乘法要注意什么?

篇八:《分数乘法》数学教案 篇八

1/23/43/8 ,2/44/54/10=2/5

是整个操场1的3/8,2/

5是整个操场1的2/5。

分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。

篇九:乘法的意义和乘法交换律 篇九

教学内容:教科书第6l页的例1和第61、62页的乘法交换率,完成“做一做”中的题目和练习十三的第1—5题。

教学目的:

(1)使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律。

(2)能够用乘法交换律验算乘法,培养学生分析推理的能力。

教具准备:把下面复习中的题目写在小黑板上,把例1的插图放大成挂图。

教学过程 :

一、复习

教师:我们在前面复习总结了加法和减法,今天要复习总结乘法。

教师出示复习题。

1.同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多少人?

2.同学们做纸花。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?

3.小荣家养鸭45只,养的鸡是鸭的3倍。小荣家养鸡多少只?

4.小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

先让学生默读题目,然后教师提问:

“上面这些题目哪些题可以用乘法计算?为什么?”请三、四个学生逐题回答能不能用乘法计算。

教师:第1题和第3题可以用乘法计算,因为这两道题都是求几个相同加数的和。

二、新课

1.教学例1。

出示例1的插图,再提问:

“要求盘里一共有多少个鸡蛋可以怎样求?

“还可以怎样求?”

学生回答后教师板书:

用加法计算:5+5+5+5+5+5=30(个)

用乘法计算:5×6=30(个)

“乘法算式5乘以6表示什么?”(6个5相加)

“乘法算式中的被乘数5是加法算式中的什么数“(相同的加数。)

“乘法算式中的乘数6是加法算式中的什么数?”(相同的加数的个数。)

“解答这道题用加法计算简便,还是用乘法计算简便?”

“求几个相同加数的和可以用什么方法计算?用哪些方法比较简便?”

“你能说出乘法是什么样的运算吗?”

教师肯定学生的回答,再强调说明并板书:求几个相同加数的和的简便运算,叫做乘法。接着让学生看教科书第61页,齐读两遍书上的结语。

“乘法算式中乘号前面的数叫什么数?表示什么?”

“乘法算式中乘号后面的数叫什么数f表示什么?”

“被乘数和乘数又叫什么数?”

教师:学过因数以后,在一个算式中被乘数和乘数就可以不必严格区分了。      2.教学乘数是1和o乘法。

(1)教学一个数和1相乘。

教师在黑板上写出三个算式:1×3、3×1、1×1。

“1乘以3等于什么?这个算式表示什么意思?学生回答后教师板书:1×3=3,  表示3个l相加的和是3。

“3乘以1等于什么?这个算式表示什么意思?”可以多让几个学生说一说。最后教师说明:1个3不能相加,3乘以1就表示1个3还是3,再板书3×l=3。

“l乘以1等于什么:能不能说这个算式表示1个1相加?”先让学生说一说,然后教  师再说明:1个l不能相加,1乘以1就表示1个1还是1,算式是:1×1=1

“这三个乘法算式都和哪个数有关系?”(都和1有关系。)

下面我们一齐看一看一个数和1相乘它们的乘积怎样,教师在黑板上写出下面一些算式:

6×1=    1×8=    1×10=    123×1=

“谁能说一说一个数和1相乘的积有什么特点?”可以多让几个学生说一说,教师边说边板书:一个数和1相乘,仍得原数。

(2)教学一个数和0相乘。

教师在黑板上写出三个算式:0×3=    3×0=    0×0=

“0乘以3等于什么?这个算式表示什么意思?”学生回答后教师板书:0×3=0表示3个0相加的和是0。

“3乘以0等于什么?能不能说这个算式表示0个3相加?”先让学生回答,教师再说明:0个3不能表示0个3相加,3乘以O就表示0个3还是0。板书:3×0=0

“0乘以0呢?”学生回答后,教师说明:0个0不能相加,0乘以0就表示0个0还是0,算式是:0×0=0。

“这三个算式都和哪个数有关系?”(都和0有关系。)

“一个数和0相乘它们的积有什么特点?”

教师边说边板书:一个数和0相乘,仍得0。

3.教学乘法交换律。

让学生再看例1的插图,然后教师提问:

“要求一共有多少鸡蛋,用乘法计算还可以怎样列式个学生回答后,教师板书:6×5=30(个)

“比较一下这两个乘法算式,有哪些相同?有哪些不同?”多让几个学生发言,互相补充。

教师:这两个算式都是两个数相乘,只是两个因数交换了位置,算出的结果相同。下面我们一起来看一下这个结论是不是有普遍性。

“12乘以5等于多少?5乘以12呢?”学生口算,教师板书算式。

“400乘以20等于多少?20乘以400呢?”学生口算,教师板书算式。

“100乘以1000等于多少?1000乘以100呢?”学生口算,教师板书算式。

“通过上面这些乘法计算,可以看出两个数相乘,交换因数的位置,计算结果怎样?”

学生发言后,教师边说边板书:两个数相乘,交换因数的位置,它们的积不变,这叫做乘法交换律。

“谁能够用字母把乘法交换律表示出来?”教师板书:a×b=b×a

“大家回忆一下,我们过去学习哪些知识时用了乘法交换律?”学生发言后,教师肯定学生的回答,并明确指出:我们曾经用交换乘数和被乘数位置的方法进行乘法验算,这实际上就是应用了乘法交换律。

三、巩固练习

1.做第62页“做一做”中的题目。先让学生独立做,然后再集体核对。

2.做练习十三的第3、4题。学生独立做完以后,再集体核对。核对第4题的第4小题时,可以引导学生计算一下等号左面等于什么,等号右面等于什么。教师再说明;三个数连乘,相乘的因数交换了位置,乘积也不变,所以乘法交换律也适合三个数连乘的计算。

四、作业

练习十三的第1、2、5题。

篇十:乘法的意义 篇十

教学内容:教科书第59页的例1和第59、60页的乘法交换律,完成“做一做”中的题目和练习十三的第1—5题。

教学目的:使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。

教学重点:乘法的意义和乘法交换律

教学难点 :用乘法交换律验算乘法

教具准备:把下面复习中的题目写在小黑板上,把例1的插图放大成挂图。

教学过程 :

一、复习

教师:我们在前面复习总结了加法和减法,今天要复习总结乘法。

教师出示复习题。

1.同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多人?

2.同学们做纸花。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?

3.小荣家养鸭45只,养的鸡是鸭的3倍,小荣家养鸡多少只?

4.小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

先让学生默读题目,然后教师提问:

“上面这些题目哪些题可以用乘法计算?为什么?”请三、四个学生逐题回答能不能用乘法计算。

教师:第1题和第3题可以用乘法计算,因为这两道题都是求几个相同加数的和。

二、新课

1.教学例1。

出示例1的插图,再提问:

“要求盘里的一共有多少个鸡蛋可以怎样求?”

“还可以怎样求?”

学生回答后教师板书:

用加法计算:5+5+5+5+5+5=30(个)

用乘法计算:5×6=30(个)

“乘法算式 5乘以6表示什么?”(6个5相加)

“乘法算式中的被乘数5是加法算式中的什么数?”(相同的加数。)

“乘法算式中的乘数6是加法算式中的什么数?”(相同的加数的个数)

“解答这道题用加法计算简便,还是用乘法计算简便?”

“求几个相同加数的和可以用什么方法计算?用哪些方法比较简便?”

“你能说出乘法是什么样的运算吗?”

教题肯定学生的回答,再强调说明并板书:求几个相同加数的简便运算,叫做乘法。接着让学生看教科书第61页,齐读两遍书上的结语。

“乘法算式中乘号前面的数叫什么数?表示什么?”

“乘法算式中乘号后面的数叫什么数?表示什么?”

“被乘数和乘数又叫什么数?”

教师:学过因数以后,在一个算式中被乘数和乘数就可以不必严格区分了。

2.教学乘数是1和0的乘法。

(1)教学一个数和1相乘。

教师在黑板上写出三个算式:1×3、3×1、1×1。

“1乘以3等于什么?这个算式表示什么意思?”学生回答后教师板书1×3=3,表示3个1相加的和是3。

“3乘以1等于什么?这个算式表示什么意思?”可以多让几个学生说一说,最后教师说明:1个3不能相加,3乘以1就表示1个3还是3,再板书3×1=3。

“1乘以1等于什么?能不能说这个算式表示1个1相加?”先让学生说一说,然后教师再说明:1个1 不能相加,1乘以1就表示1个1还是1,算式是1×1=1。

“这三个乘法算式都和哪个数有关系?”(都和1有关系)

下面我们一齐看一看一个数和1相乘它们的乘积怎样,教师在黑板上写出下面一些算式:

6×1=      1×8=     1×10=      123×1=

“谁能说一说一个数和1相乘的积有什么特点?”可以多让几个学生说一说。

教师边说边板书:一个数和1相乘,仍得原数。

(2)教学一个数和0相乘。

教师在黑板上写出三个算式0×3 =     3×0 =     0×0=

“0乘以3等于什么?这个算式表示什么意思?”学生回答后教师板书:0×3 =0表示3个0相加的和是0。

“3乘以0等于什么?能不能说这个算式表示0个3相加?”先让学生回答,教师再说明:0个3不能表示0个3相加,3乘以0就表示0个3还是0。板书:3×0=0

“0乘以0呢?”学生回答后,教师说明:0个0不能相加,0乘以0就表示0个0还是0,算式是:0×0=0。

“这三个算式都和哪个数有关系?”(都和0有关系)

“一个数和0相乘它们的积有什么特点?”

教师边说边板书,一个数和0相乘,仍得0。

3.教学乘法交换律。

让学生再看例2的插图,然后教师提问:

“要求一共有多少鸡蛋,用乘法计算还可以怎样列式?”学生回答后,教师板书:6×5=30(个)

“比较一下这两个乘法算式,有哪些相同?有哪些不同?”多让几个学生发言,互相补充。

教师:这两个算式都是两个数相乘,只是两个因数交换了位置,算出的结果相同。下面我们一起来看一下这个结论是不是有普遍性。

“12乘以5等于多少?5乘以12呢?”学生口算,教师板书算式。

“400乘以20等于多少?20乘以400呢?”学生口算,教师板书算式。

“100乘以1000等于多少?1000乘以100呢?”学生口算,教师板书算式。

“通过上面这些乘法计算,可以看出两个数相乘,交换因数的位置,计算结果怎样?”

学生发言后,教师边说边板书:两个数相乘,并换因数的位置,它们的积不变,这叫做乘法交换律。

“谁能够用字母把乘法交换律表示出来?”教师板书:a×b=b×a

“大家回忆一下,我们过去学习哪些知识时用了乘法交换律?”学生发言后,教师肯定学生回答,并明确指出:我们曾经用交换乘数和被乘数位置的方法进行乘法验算,这实际上就是用了乘法交换律。

三、巩固练习

1.做第60页“做一做”中题目。先让学生独立做,然后再集体核对。

2.做练习十三的第3、4题。学生独立做完以后,再集体核对。核对第4题的第4小题时,可以引导学生计算一下等号左面等于什么,等号右面等于什么。教师再说明:三个数连乘,相乘的因数交换了位置,乘积也不变,所以乘法交换律也适合三个数连乘的计算。

四、作业

练习十三的第1、2、5题。

相关推荐

热门图文

上一篇:中班美术教案(最新7篇)

下一篇:2024思想汇报入党积极分子(优秀3篇)